
 
 

Hybrid Methods for Computing the Streamfunction and
Velocity Potential for Complex Flow Fields over

Mesoscale Domains

Jie CAO1,2, Qin XU*3, Haishan CHEN1, and Shuping MA4

1Key Laboratory of Meteorological Disaster (KLME), Ministry of Education & Collaborative Innovation

Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of

Information Science & Technology, Nanjing 210044, China
2Cooperative Institute for Mesoscale Meteorological Studies (CIMMS),

University of Oklahoma, Norman 73072, Oklahoma, USA
3NOAA/OAR/National Severe Storms Laboratory, Norman 73069, Oklahoma, USA

4Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

(Received 20 July 2021; revised 16 November 2021; accepted 10 December 2021)

ABSTRACT

Three  types  of  previously  used  numerical  methods  are  revisited  for  computing  the  streamfunction ψ and  velocity
potential χ from the horizontal velocity v in limited domains. The first type, called the SOR-based method, uses a classical
successive over-relaxation (SOR) scheme to compute ψ (or χ) first with an arbitrary boundary condition (BC) and then χ (or
ψ)  with  the  BC derived  from v.  The  second  type,  called  the  spectral  method,  uses  spectral  formulations  to  construct  the
inner part of (ψ, χ)—the inversion of (vorticity, divergence) with a homogeneous BC, and then the remaining harmonic part
of  (ψ, χ)  with  BCs  from v.  The  third  type,  called  the  integral  method,  uses  integral  formulas  to  compute  the  internally
induced (ψ, χ)—the inversion of domain-internal (vorticity, divergence) using the free-space Greenꞌs function without BCs
and then the remaining harmonic ψ (or χ) with BCs from v minus the internally-induced part. Although these methods have
previously  been  successfully  applied  to  flows  in  large-scale  and  synoptic-scale  domains,  their  accuracy  is  compromised
when  applied  to  complex  flows  over  mesoscale  domains,  as  shown  in  this  paper.  To  resolve  this  problem,  two  hybrid
approaches,  the  integral-SOR method  and  the  integral-spectral  method,  are  developed  by  combining  the  first  step  of  the
integral method with the second step adopted from the SOR-based and spectral methods, respectively. Upon testing these
methods  on  real-case  complex  flows,  the  integral-SOR  method  is  significantly  more  accurate  than  the  integral-spectral
method,  noting  that  the  latter  is  still  generally  more  accurate  than  the  three  previously-used  methods.  The  integral-SOR
method is recommended for future applications and diagnostic studies of complex flows.
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Article Highlights:

•  Significant  losses  in  accuracy  result  when  previous  methods  were  applied  to  compute  the  streamfunction  and  velocity
potential for complex flows over mesoscale domains.

•  Three previous methods are revisited to determine their strengths and weaknesses.
•  Two hybrid methods are constructed with improved accuracies.
•  The integral-SOR method is recommended for future applications.

 

 
  

1.    Introduction

It is well-known that a horizontal velocity field can be
partitioned  into  rotational  and  divergent  components  that
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are represented by a streamfunction ψ and a velocity potential
χ, respectively. This kind of flow partitioning has been useful
in studying atmospheric-flow transformations and energy cas-
cades (DiMego and Bosart, 1982; Vallis et al., 1997), in devel-
oping  vorticity-based  models  for  oceanic-flow simulations,
in  numerical  weather  prediction  (Haltiner  and  Williams,
1980; Allen et  al.,  1990; Jung and Arakawa,  2008),  and in
choosing control variables, formulating constraints, construct-
ing  and  estimating  background  error  covariance  functions
for  data  analyses  and  assimilation  (Hollingsworth  and
Lönnberg,  1986; Daley,  1991; Xu  and  Qiu,  1994; Xu  and
Wei,  2001, 2002; Mewes and Shapiro,  2002; Xu,  2021).  It
has  long  been  recognized  that  the  solution  of  (ψ, χ)  is
unique in an unbounded or periodic domain but not in a lim-
ited domain (Sangster,  1960; Lynch,  1989; Chen and Kuo,
1992a, b; Li et al., 2006; Xu et al., 2011). Although global
wind  data  are  becoming  denser  and  easier  to  access  than
decades ago, their spatial resolutions are still too coarse for
mesoscale domains; and the data-set sizes will be too large
if ψ and χ are computed over a periodic global domain, only
to  be  locally  used  for  mesoscale  studies.  This  justifies  the
need for flow decompositions in limited domains.

The  non-uniqueness  of  (ψ, χ)  in  a  limited  domain  is
caused by the existence of the harmonic components of (ψ,
χ) in the null space of the coupled system of equations and
boundary conditions in a limited domain (see section 2 and
Appendix A of Xu et al., 2011). To avoid such non-unique-
ness, Sangster (1960) proposed a method with the harmonic
component represented solely by ψ, and Lynch (1989) formu-
lated eight variants of Sangster's method with the horizontal
velocity  partitioned  into  three  mutually  orthogonal  compo-
nents, that is, the rotational, divergent, and harmonic compo-
nents.  Since the classical  successive over-relaxation (SOR)
scheme was used in Sangster's method (and its variants) to
solve for (ψ, χ) from their respective Poisson equations with
associated  boundary  conditions,  the  Sangster's  method  is,
therefore,  a  SOR-based  method.  By  using  sine  and  cosine
series expansions, Chen and Kuo (1992a, b; CK92a, b here-
after) developed two versions of the spectral method (called
the S-version and C-version, respectively, hereafter) for com-
puting (ψ, χ) in a limited domain. In CK92b, the C-version
was shown to be more accurate and efficient than the S-ver-
sion, but two solvability conditions were overlooked in the
C-version  (see  the  related  exposition  in  section  2.3  of  this
paper). In considering a two-component partitioning of (ψ, χ)
in  a  limited  domain,  one  component  of  (ψ, χ)  is  induced
purely internally and uniquely by the vorticity and divergence
inside  the  domain.  The  remaining  component  of  (ψ, χ)  is
taken as a harmonic one because it is induced purely exter-
nally and non-uniquely by unknown vorticity and divergence
fields outside the domain.

Xu et al. (2011) and Cao and Xu (2011, CX11 hereafter)
developed  a  method  based  on  integral  formulas,  called  the
integral  method hereafter,  for  computing the internally and
externally  induced  (ψ, χ)  in  a  limited  domain  of  arbitrary
shape.  The  integral  method  was  used  recently  by  Xu  and
Cao (2021) to solve the nonlinear balance equation iteratively

over  limited  domains  and  found  this  approach  to  be  more
accurate and efficient than the classical SOR-based scheme
in  solving  the  boundary  value  problem associated  with  the
Poisson equation.

The three previous methods have been applied to various
velocity  fields  in  diagnostic  studies  of  weather  systems
(Buechler and Fuelberg, 1986; Loughe et al., 1995; Fiedler,
2002; Aimi  et  al.,  2014; Cao  et  al.,  2019; You  and  Fung,
2019; You et al., 2019; Ullah et al., 2020, 2021; Cao, 2021;
Fu et al., 2021; Zhao and Cook, 2021) and in data assimilation
(Daley,  1991; Parrish  and  Derber,  1992; Xu  et  al.,  2006,
2007).  In these applications,  the flow structures of concern
are well covered by sufficiently large analysis domains and
can  be  accurately  partitioned  by  the  integral  method.  In
other  words,  the  partitioned  velocity  fields  computed  from
(ψ, χ)  can reconstruct  the original  velocity fields with high
accuracy. However, as we noted recently from some applica-
tions  of  the  integral  method  to  strong  and  complex  flow
fields during a torrential blizzard event in mesoscale studies,
this  method  tends  to  lose  considerable  accuracy,  although
the  integral  method  is  still  more  accurate  than  the  SOR-
based and spectral methods. The accuracy further deteriorates
under  stronger  and  more  heterogenous  flow,  exhibiting
sharp variations not only inside the domain but also across
or along the domain boundary. In this case, the sum of the par-
titioned  velocities  cannot  accurately  recover  the  original
velocity, so the concerned flow field is not accurately parti-
tioned for diagnostic studies. This problem is new and unre-
solved for  all  the three previous methods,  as  shown in this
paper.

This paper aims to solve or alleviate the abovementioned
new problem by optimally combining the previous methods.
To achieve this,  we will  revisit  the three previous methods
to  identify  each  method's  strengths  (or  weaknesses)  which
can be retained (or avoided) via a hybrid approach to reduce
the  aforementioned  loss  of  accuracy  in  mesoscale  applica-
tions. This paper shows that the SOR-based and spectral meth-
ods tend to lose their accuracy because of increased spatial
variations of the original velocities inside the domain. In con-
trast,  the  integral  method  tends  to  lose  its  accuracy  due
mainly to increased variations of original velocity across or
along the domain boundary, which reduces the accuracy of
the  externally  induced  (ψ, χ)  obtained  in  the  second  step.
Meanwhile,  the  internally  induced  (ψ, χ),  obtained  using
Green's functions in the first step, remains sufficiently accu-
rate  despite  increased  spatial  variations  of  velocity  inside
the domain. The above-highlighted strengths and weaknesses
for each method imply that it is possible to construct a new
hybrid  method  by  using  the  integral  method  first  to  obtain
the  internally  induced  component  of  (ψ, χ)  and  then  using
the SOR-based method or spectral method to obtain the exter-
nally  induced  harmonic  component  of  (ψ, χ).  Such  hybrid
methods will be constructed and tested against the three previ-
ous  methods  with  the  aforementioned  difficult  cases
recently encountered in mesoscale applications.

The  paper  is  organized  as  follows.  The  next  section
reviews  the  problem  of  solving  for  (ψ, χ)  in  a  limited
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domain with the three previous methods revisited in the first
three  subsections  and  the  two  hybrid  methods  proposed  in
the last subsection. Section 3 describes the test case and evalu-
ation methods. Section 4 outlines the test experiments, exam-
ines the test results from the hybrid methods, and compares
these to the results from the previous three methods. Section
5 presents the conclusions. 

2.    Revisiting  the  previous  methods  and
design of new hybrid methods

When  the  horizontal  velocity v =  (u, v)  is  represented
by (ψ, χ), we have v = k × ∇ψ + ∇χ, where k is the unit vector
in the vertical direction and ∇ is the gradient operator in the
two-dimensional space of x ≡ (x, y). As mentioned in the intro-
duction section,  (ψ, χ)  contains  no harmonic  component  in
an unbounded or periodic domain, so (ψ, χ) can be uniquely
defined by uniquely relating k × ∇ψ and ∇χ to the rotational
and divergent parts  of v,  respectively.  In a limited domain,
(ψ, χ)  contain  a  harmonic  component  and  thus  cannot  be
uniquely defined and determined due to the nonunique parti-
tion and attribution of the harmonic component to (ψ, χ). In
this case, the following relationships hold: 

∇2ψ = ζ (in D) , (1a)
 

∇2χ = α (in D) , (1b)
 

∂nψ+∂sχ = vs (onS ) , (2a)
 

∂nχ−∂sψ = vn (onS ) , (2b)

∂ ∂ ∂
∂

∂ ∂

where ζ = k • ∇×v = xv – yu is the vorticity, α = ∇ • v = xu
+ yv is  the  divergence, D denotes  the  limited  domain, S
denotes the boundary of D, n (or s) denotes the boundary-
normal (or boundary-tangential) component of ∇, and vn (or
vs) is the boundary-normal (or boundary-tangential) compo-
nent of v on S.

Applying  the  Gauss  and  Stokes's  theorems  to  Eqs.  (1)
and (2) leads to the following solvability conditions:  ∫

S
vsdl =

∫
D
ζdx , (3a)

  ∫
S

vndl =
∫

D
αdx , (3b)

where  ∫S (  )dl denotes  the  line-integration  of  (  )  along  the
closed loop of S and ∫D ( )dx denotes the area-integration of
( ) over D. These two solvability conditions are accurately sat-
isfied in discrete forms by the original v fields used in this
paper in three mesoscale domains (as shown later in Table 2)
but  not  accurately  by  the  reconstructed  velocity  fields  (as
shown later in Table 3).

The above two solvability conditions can be expressed
in  terms  of  (ψ, χ).  In  this  case,  each  solvability  condition

can be split into two parts as shown below. Since (ψ, χ) are
single-valued continuous functions along the closed loop of
S, the first part of the solvability condition in Eq. (3a) or (3b)
in terms of (ψ, χ) satisfies:  ∫

S
∂sχdl =

∫
S

dχ = 0 , (4a)
  ∫

S
∂sψdl =

∫
S

dψ = 0 . (4b)

The remaining second part  of  the solvability condition
can be then obtained by substituting Eqs.  (2a)  and (4a)  [or
(2b) and (4b)] into Eq. (3a) [or (3b)], which gives  ∫

S
∂nψdl =

∫
S

vsdl =
∫

D
ζdx , (5a)

  ∫
S
∂nχdl =

∫
S

vndl =
∫

D
αdx . (5b)

 

2.1.    Integral method

In  the  integral  method,  the  internally  induced  (ψ, χ),
denoted by (ψin, χin), is given by 

[ψin(x),χin(x)] = (2π)−1
∫

D
dx′[ζ(x′),α(x′)] lnr , (6)

π

ζ α

ζ α

where r = |x' − x| and (2 )–1 lnr is the free-space Greenꞌs func-
tion for Poisson equation in an unbounded domain but here
it  is  applied  to  ( , )  in D.  Three  discretization  schemes
were developed in CX11 for  computing the integral  in  Eq.
(6), and the first scheme that used a staggered grid for ( , )
is used in this paper. Ideally, (ψin, χin) should exactly satisfy
those solvability conditions that are further partitioned from
Eqs. (4) and (5), that is,  ∫

S
∂s(ψin,χin)dl = 0 , (7a)

  ∫
S
∂n(ψin,χin)dl =

∫
S

(vs,vn)dl =
∫

D
(ζ,α)dx . (7b)

Practically, the computed (ψin, χin) cannot accurately sat-
isfy the second solvability condition in Eq. (7b) due mainly
to  discretization  errors  in  computing ∂n(ψin, χin),  although
the first solvability condition in Eq. (7a) is exactly satisfied.
The  errors  involved  are  usually  small  and  negligible.  Still,
they  can  increase  significantly  as  the  original v becomes
strong with sharp variations across or along S (as mentioned
in  the  introduction  and  seen  later  from Tables  3 and 4).
Note that Green's function in Eq. (6) involves no boundary
condition, and the derived integral form of (ψin, χin) is simple
and unaffected by any complications in the boundary condi-
tion.  Owing  to  the  simplicity  of  this  integral  form  and  the
use of  a  staggered grid in discretizing (ζ, α),  the computed
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(ψin, χin) is more accurate and less sensitive to increased and
sharpened spatial variations of original v in D than the solu-
tions computed by the other two methods. This is an important
strength  of  the  integral  method  that  should  be  adopted  for
the purpose of first obtaining (ψin, χin) in a hybrid approach.

∂
∂

∂

The remaining externally induced harmonic component
of (ψ, χ), denoted by (ψe, χe), is computed in the second step
by simply setting χe = 0. With χe = 0, (ψ, χ) can be uniquely
defined by relating k × ∇ψ (or ∇χ)  to  the  nondivergent  (or
divergent) part of v, where the nondivergent part consists of
the rotational part and harmonic part of v. With the above sim-
plification,  four  discretization  schemes  were  developed  in
CX11  for  computing ψe and  the  Cauchy-integral  scheme
(shown  in  section  4  of  CX11)  is  used  in  this  paper.  This
scheme computes the complex velocity potential defined by
ωe = φe – iψe where i is the imaginary unit, while the boundary
value of ψe (or φe) is obtained by integrating sψe = vn,in – vn

(or sφe = vs – vs,in) along S as shown in (3.9) [or (3.10)] of
Xu et al. (2011), where vn,in (or vs,in) is the boundary-normal
(or boundary-tangential) component of vin ≡ k × ∇ψin + ∇χin

on S. Since ∇2(ψe, φe) = (0, 0) and ∂s(ψe, φe) = n(–φe, ψe) on
S according  to  the  Cauchy-Riemann  conditions,  the  paired
solvability conditions for (ψe, φe) can be derived from the par-
titioned solvability conditions in Eqs. (7a, b) in the following
form:  ∫

S
∂s(ψe,φe)dl =

∫
S
∂n(−φe,ψe)dl

=

∫
S

(vn,in− vin,vs− vs,in)dl = (0,0) . (8)

∂ ∂
∂ ∂

Note from Eqs. (2a, b) that vs,in = nψin + sχin and vn,in =
nχin – sψin on S,  so  the  solvability  conditions  in  Eq.  (8)

can be exactly satisfied only if (ψin, χin) exactly satisfies the
solvability  conditions  in  Eqs.  (7a,  b).  As  explained  earlier,
for (ψin, χin) computed in the first step, the paired solvability
conditions in Eq. (7a) are satisfied exactly, but the paired solv-
ability  conditions  in  Eq.  (7b)  are  not;  therefore,  the  paired
solvability  conditions  in  Eq.  (8)  are  also  not  exactly  satis-
fied.  Consequently,  the  boundary  value  of ψe (or φe)
obtained  by  integrating  ∂nχin – vn (or vs – ∂nψin)  along  the
boundary loop undergoes a discontinuous jump when the inte-
gration  returns  to  the  beginning  point.  Although  such  a
jump can be spread out and somewhat diluted by redistribut-
ing it evenly over the entire boundary loop, the paired solv-
ability  conditions  in  Eq.  (7b)  are  still  not  exactly  satisfied,
and their induced errors in the computed boundary values of
(ψe, φe) remain essentially intact. While more accurate than
the other  three  schemes developed in  CX11 for  computing
ψe (with χe = 0), the Cauchy-integral scheme is quite sensitive
to small errors in the computed boundary values of (ψe, χe)
that cannot accurately satisfy the paired solvability conditions
in Eq. (8), because the scheme is derived from an analytical
integral and this integral requires the paired solvability condi-
tions in Eq. (8) to be precisely satisfied. This appears to be a
weakness for the integral method. Still, it can be avoided if
ψe (with χe = 0) can be computed by another method with an

improved accuracy after (ψin, χin) is obtained by the integral
method via a hybrid approach. 

2.2.     SOR-based method

∂ ∂
∂

∂ ∂

∂

The SOR-based method (Sangster, 1960) solves the cou-
pled system of Eqs. (1)–(2) with either ψ or χ freely prescribed
on S. For example, if ψ is chosen to be freely prescribed on
S, then ψ can be solved first from Eq. (1a) in D, which gives

nψ along S.  Thus, sχ can  be  obtained  along S from  Eq.
(2a), and integrating sχ along S gives the boundary value of
χ that allows χ be finally solved from Eq. (1b) in D. In this
case, the solvability condition in Eq. (4b) is satisfied exactly,
but  the  solvability  condition  in  Eq.  (5a)  is  satisfied  only
approximately  due  to  discretization  errors  in  solving  for ψ
and computing nψ.  Thus,  when the boundary value of sχ
is  obtained from Eq. (2a),  its  boundary loop integral  is  not
exactly zero. In other words, the solvability condition in Eq.
(4a)  is  not  exactly  satisfied,  so  the  boundary  value  of   χ
obtained by integrating sχ along S undergoes a discontinuous
variation when the loop integration returns to the beginning
point.

∂ ∂

∂

Similarly but alternatively, if  χ is chosen to be freely pre-
scribed on S, with χ solved first from Eq. (1b) in D, then the
solvability condition in Eq. (4a) is satisfied exactly, but the
solvability  condition  in  Eq.  (5b)  is  satisfied  only  approxi-
mately due to discretization errors in solving for χ and com-
puting nχ.  Thus,  when  the  boundary  value  of sψ is
obtained from Eq. (2b), its boundary loop integration is not
exactly  zero.  In  this  case,  the  solvability  condition  in  Eq.
(4b)  is  not  exactly  satisfied  and  the  boundary  value  of ψ,
obtained by integrating sψ along S, undergoes a discontinu-
ous jump when the loop integration returns to the beginning
point.

The  abovementioned  jump  can  be  negligibly  small  if
the  original v is  sufficiently  smooth.  Still,  it  can  become
large if the original v demonstrates sharp variations not ade-
quately  resolved  by  the  analysis  grid,  especially  across  or
along  the  domain  boundary  (as  shown  later  in Table  3).
Although  this  jump  can  be  thinned  out  by  redistributing  it
evenly over the entire boundary loop, its implied error in the
boundary condition remains essentially intact.

In this paper,  the SOR is implemented with (ψ, χ)  and
(ζ, α) discretized on the same grid. The discretization errors
of ∇2(ψ, χ) and (ζ, α) are large in areas of complex flow, and
these large errors tend to accumulate as the iterative process
of  SOR goes  sequentially  point-by-point  through  the  areas
of complex flow. The SOR-based method is thus relatively
sensitive  to  (and  its  accuracy  can  be  significantly  reduced
by) increased spatial variations of original v and thus further
sharpened variations of (ζ, α) that were computed from origi-
nal v inside the domain D (as shown later in section 4). On
the other hand, if the SOR-based method is used to solve for
(ψe, χe) with a vanished (ζ, α) inside D, then the discretization
errors  of ∇2(ψ, χ)  and  (ζ, α)  will  become  small  or  much
smaller everywhere inside D, so (ψe, χe) can be solved with
improved  accuracy.  This  implies  that  the  SOR-based
method should  have  an  advantage  if  it  is  used  to  solve  for
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the  externally  induced  (ψe, χe)  after  the  internally  induced
(ψin, χin)  is  obtained  by  the  integral  method  via  a  hybrid
approach. Such a hybrid approach will be considered in sec-
tion 2.4. 

2.3.     Spectral method and modified spectral method

As  mentioned  in  the  introduction,  the  spectral  method
of CK92a,b has two versions, called the S-version and C-ver-
sion,  respectively.  In  either  version,  (ψ, χ)  is  divided  into
two  parts,  called  the  inner  part  and  harmonic  part  and
denoted  by  (ψin,n, χin,n)  and  (ψh,a, χh,a),  respectively.  The
inner part is well defined in the S-version by the solution of
∇2(ψin,n, χin,n)  ≡ (ζ, α)  in D with  a  zero  Dirichlet  boundary
value  but  is  ill-defined  in  the  C-version  by  the  solution  of
∇2(ψin,n, χin,n) ≡ (ζ, α) in D with a zero Neumann boundary
value [see Eq. (2.7) of CK92b] without considering the two
solvability  conditions  in  Eqs.  (5a,b).  The  ill-defined  (ψin,n,
χin,n) in the C-version has not caused significant inconsistency
problems in previous applications to synoptic-scale flows in
large-scale  limited  domains  in  which  ∫D ζdx and ∫D αdx
nearly  vanish.  Thus,  the  two  solvability  conditions  in  Eqs.
(5a,b) can be approximately satisfied with a zero Neumann
boundary  value.  Perhaps  because  of  this,  the  inconsistency
problem of the C-version was not noted or addressed when
the S-version was refined (Boyd et al., 2013). This inconsis-
tency problem can become serious for applications of the C-
version method to complex flows with increased ∫D ζdx and/
or  ∫D αdx (as  seen later  from Table 2).  In this  case,  the ill-
defined (ψin,n, χin,n) in the C-version must be properly rede-
fined, as shown below.

The inner part in the C-version can be properly redefined
if it  is further divided into two sub-parts, denoted by (ψin,s,
χin,s) and (ψin,c, χin,c), respectively, while (ψin,s, χin,s) is well-
defined by the solution of ∇2(ψin,s, χin,s) = (∫D ζdx, ∫D αdx) in
D with zero Dirichlet boundary value and (ψin,c, χin,c) is well
defined by the solution of ∇2(ψin,c, χin,c) = (ζ – ∫D ζdx, α – ∫D
αdx) in D with a zero Neumann boundary value. The spectral
formulations  derived  for  the  S-versionꞌs  (or  C-versionꞌs)
inner part in CK92a (or CK92b) can be then used to obtain
(ψin,s, χin,s)  [or  (ψin,c, χin,c)]  consistency with  the  solvability
conditions  in  Eqs.  (5a,b).  The  redefined  inner  part  is  thus
given by (ψin,n, χin,n)  = (ψin,s, χin,s)  + (ψin,c, χin,c)  in the first
step.  After  this,  the  harmonic  part,  (ψh,a, χh,a),  can  be
obtained in the second step using the spectral  formulations
derived in CK92b for C-version harmonic part. The C-version
spectral method is modified in this way and implemented in
this  paper.  According  to  CK92b,  the  C-version  spectral
method  is  more  accurate  and  efficient  than  the  S-version.
The modified C-version spectral method, called the M-spec-
tral method for short, is more accurate than the two original
versions of  the spectral  method of  CK92a,  b especially for
mesoscale domains, so the M-spectral method is used in this
paper.

Like the SOR-based method, the second part of the M-
spectral method is also not very sensitive to increased varia-
tions of the original v across or along S.  However, the first
part  of  the  M-spectral  method  is  more  sensitive  than  the

SOR-based method to increased spatial variations of the origi-
nal v inside D. The increased sensitivity is due mainly to the
use of a zero Dirichlet (or Neumann) boundary value in defin-
ing and solving for (ψin,s, χin,s) [or (ψin,c, χin,c)] that can cause
sharp  near-boundary  variations  in  the  solution  poorly
resolved  by  the  analysis  grid,  especially  when  (∫D ζdx,  ∫D
αdx)  is  not  small  or  (ζ, α)  has  sharp  near-boundary  varia-
tions. This is because (ψin,s, χin,s) [or (ψin,c, χin,c)] has a zero
Dirichlet (or Neumann) boundary value and thus must have
sharp  near-boundary  variations  in  the  boundary-normal  (or
boundary-parallel) direction so that ∇2(ψin,s, χin,s) [or ∇2(ψin,c,
χin,c)]  can have the same sharp near-boundary variations as
(ζ, α) to satisfy the Poisson equation. Poorly resolved near-
boundary  variations  in  (ψin,n, χin,n)  [=  (ψin,s, χin,s)  +  (ψin,c,
χin,c)] can generate additional errors in the boundary condi-
tions for (ψh,a, χh,a) [see Eqs. (2.11)–(2.15) of CK92b], and
these additional errors can propagate and spread throughout
the domain when (ψh,a, χh,a) is solved iteratively. The above-
explained  additional  errors  and  their  propagation  make  the
M-spectral  method  less  accurate  than  the  SOR-based
method  for  the  difficult  cases  considered  in  this  paper  (as
shown  later  in Table  1).  However,  since  the  additional
errors  are  generated  from  (ψin,n, χin,n)  in  the  M-spectral
method,  the  second  part  of  the  method  for  obtaining  (ψh,a,
χh,a) should still have an advantage if it is used not in the M-
spectral method but in a hybrid method to obtain the exter-
nally induced (ψe, χe) after the internally induced (ψin,n, χin,n)
is obtained by the integral method; this hybrid approach will
also be considered in section 2.4. 

2.4.     Hybrid approach

Two  hybrid  methods  are  designed  to  reduce  the
increased loss of accuracy caused by increased complexities
of the original v field, not only in D but also across or along
S. The mathematical foundations for the hybrid methods are
the same as the adopted three methods mentioned above. In
these  two  hybrid  methods,  (ψ, χ)  is  divided  into  (ψin, χin)
and (ψe, χe) for the internally and externally induced compo-
nents,  respectively,  in  the  same  way  as  in  the  integral
method.  To  retain  the  strength  and  related  advantages
explained in section 2.1 for the integral method, the internally
induced  components,  (ψin, χin),  should  be  calculated  in  the
first step in the same way as that in the integral method. The
SOR-based  method  can  be  used  adaptively  for  computing
the externally induced ψe (with χe = 0) in the second step as
described in section 2.2, while the M-spectral method for com-
puting  (ψe, χe)  as  described  in  section  2.3.  This  approach
can improve the accuracy of (ψe, χe) computed in the second
step  because  (as  explained  in  sections  2.2  and  2.3),  these
two  methods  are  less  sensitive  than  the  integral  method  to
increased variations of original v across or along the domain
boundary  and  their  caused  errors  in  solvability  conditions
and related boundary condition errors.  The aforementioned
hybrid methods are called the integral-SOR and integral-spec-
tral methods, respectively. The detailed computational proce-
dures of  the two hybrid methods are shown in Fig.  1.  Test
results from these two hybrid methods in computing (ψ, χ)
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from  original v fields  with  complex  flow  patterns  in
mesoscale domains will be shown in section 4 and compared
with the results from three previous methods. 

3.    Test case and evaluation method
 

3.1.     Test case

The  severe  weather  case  of  a  blizzard  in  Xinjiang
Province on 30 November 2018 is chosen from a series of dif-
ficult cases recently encountered for mesoscale applications
of  the  previous  methods.  In  this  case,  wind  fields  in  the

lower  troposphere  showed  sharp  horizontal  variations
caused by severe weather over complex terrain. The discrete
field of original v used in this paper is from the numerical sim-
ulation of this chosen case (Ma et al., 2021) with a 3-km hori-
zontal  resolution  for  the  innermost  nested  model  domain
that  covers  a  300  km  ×  300  km  square  mesoscale  area
located  between  the  Ili  Valley  and  North  Tianshan  Moun-
tain. Specifically, the original v field is taken as the simulated
wind field at 2100 UTC on 30 November at the model’s ter-
rain-following vertical level about 0.5 km above the ground
(2.5 km above the mean sea level). This v field serves as a
test  example.  Similar  examples  of  2D v fields  can  be

 

 

Fig. 1. Computational procedures of (a) the integral-SOR method and (b) the integral-spectral method.
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obtained, either directly in the model’s terrain-following coor-
dinate system or indirectly (via vertical  interpolations) in a
local Cartesian coordinate system.

The main analysis domain, called domain D1, comprises
the  entire  domain  shown  in Fig.  2.  Strong  westerly  winds
blow into domain D1 from its western boundary and prevail
over most areas of domain D1. The complexity of this original
v field is evidenced by its sharp spatial variations and rapid
flow  pattern  transitions  from  strongly  divergent  areas  to
strongly  convergent  areas  (and  vice  versa)  accompanied
with conspicuous horizontal shears and/or rotations. At least
four banded areas or belts of strong convergent flow can be
clearly and easily identified and used for visual comparisons
performed later in section 4. These four areas consist of two
strong convergence zones accompanied with sharp wind direc-
tion changes (as shown by the two banded areas marked by
Z1 and Z3 with orange boundaries in Fig.  2) and two with
sharp wind speed changes (as  shown by the two belt  areas
marked by Z2 and Z4 with yellow boundaries in Fig. 2).

Within  the  main  analysis  domain,  two  subdomains,
called domains D2 and D3, are selected and will be used, in
addition to domain D1, for the test experiments in section 4.
These two subdomains are shown in Fig. 2 by the rectangular
areas within the dashed boundary lines colored in green (for
D2)  and  blue  (for D3).  The  two  strong  convergence  zones,
Z1 and Z2, are mostly contained in domain D2, although Z1
extends  beyond  the  eastern  boundary  and  Z2  extends
slightly  beyond  the  western  boundary  of  domain D2.
Another  two  strong  convergence  zones,  Z3  and  Z4,  are

mostly  contained  in  domain D3,  although  the  Z3  zone
extends  beyond  the  northern  boundary,  and  the  Z4  zone
extends  beyond  the  southern  and  western  boundaries  of
domain D3. Clearly, the original v field has sharp variations
with  strong  convergence  not  only  within  each  subdomain
but also across or along some (or large) portions of the bound-
ary of subdomain D2 (or D3). Thus, accurate computation of
(ψ, χ) becomes increasingly difficult as the analysis domain
is reduced from D1 to D2 and further reduced to D3, as seen
later from the results of test experiments in section 4. 

3.2.     Evaluation methods

Since  the  true  values  of  (ψ, χ)  are  neither  exactly
known nor given in real cases, evaluations and verifications
can be performed only by comparing the reconstructed hori-
zontal  velocity  [denoted  by vc ≡ ( uc, vc)]  with  the  original
one [denoted by v ≡ (u, v)] for the purpose of achieving close-
ness between vc to v. Quantitatively, the closeness of vc to v
can be measured in terms of a spatial correlation coefficient
(SCC)  and  a  relative  root-mean-square  difference  (RRD)
defined by 

SCC =
∑

i, j
{[uc(i, j)−Uc][u(i, j)−U]+ [vc(i, j)−Vc]

[v(i, j)−V]}/(mnσcσ) , (9a)
 

RRD =
{[∑

i, j
(uc(i, j)−u(i, j))2+ (vc(i, j)− v(i, j))2

]
/∑

i, j
[u2

(i, j)+ v2
(i, j)]
}1/2

. (9b)

Here, m and n are the numbers of grid points in x and y
directions, respectively, inside of the domain, ∑ i,  j denotes
the summation over i from 1 to m and j from 1 to n, Uc, Vc,
U, and V are the mean values of uc, vc, u, and v, respectively,
over the domain, and 

σ2
c =
∑

i, j
{[uc(i, j)−Uc]2+ [vc(i, j)−Vc]2}/mn , (9c)

 

σ2 =
∑

i, j
{[u(i, j)−U]2+ [v(i, j)−V]2}/mn . (9d)

A high SCC and small RRD indicate high accuracy of
vc and vice versa. A simple quantitative criterion for adequate
accuracy will be used in this paper, which requires 

SCC > 0.98 and RRD < 0.15 . (10)
 

4.    Results of experiments

The SCC and RRD values between original v and recon-
structed vc from each method are listed for each domain in
Table 1. Computational costs are also recorded to assess the
efficiency  of  all  methods.  All  five  methods  cost  less  than
three seconds of CPU time in the three experiments. Without
parallel  computing,  the  SOR  method  costs  the  least  CPU
time.  The  integral  method  can  be  easily  parallelized  to

 

Fig.  2. Original v plotted  by  black  arrows  on  the  model's
terrain-following vertical level about 0.5 km above the ground.
The boundaries of the domains D1, D2, and D3 are marked by
red,  green,  and  blue  dashed  lines,  respectively.  Convergence
zones  accompanied  by  sharp  changes  in  wind  direction  and
speed  are  enclosed  by  orange  and  yellow  lines,  respectively.
The (x, y) coordinate origin is at the southwestern corner, and
the  (x, y)  coordinates  are  marked/labeled  every  50  km.  The
velocity scale is shown at the lower-left corner.
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achieve extremely high computational efficiency. Thus, the
integral method can be much more efficient than the iterative
SOR method  with  parallel  computing,  especially  when  the
number  of  grid  points  for  the  discretized  domain  becomes
extremely  large.  Results  for  the  main  analysis  domain D1

(rows  2–6  of Table  1)  show  that  the  M-spectral  (or  SOR-
based) method is the least (or second least) accurate, the inte-
gral and integral-spectral methods have about the same accu-
racy, and the integral-SOR method is most accurate among
the five methods.  In this  case,  the SOR-based (M-spectral)
method fails marginally (badly) in retaining adequate accu-
racy  according  to  the  criterion  in  (10).  In  particular,  as
shown in Fig. 3a, vc from the SOR-based method deviates sig-
nificantly  from v around  the  southwest  corner  (within  the
southwest  quadrant)  and  along  the  eastern  boundary  of D1

and also has notable deviations from v in Z2 and Z4. How-
ever, it can largely reproduce the complex convergent flow
structures of v in Z1 and Z3. As shown in Fig. 3b, vc from
the  M-spectral  method  has  large  and/or  notable  deviations
from v in many areas nearly over the entire domain D1, espe-
cially in Z1, Z3, and Z4. In contrast, vc from the other three
methods has almost the same flow structures and intensities
as v, and the deviations are hardly visible and therefore not
shown. All three methods have adequate accuracies.

As the analysis domain is reduced from D1 to D2, sharp
variations of v are seen across or along slightly increased por-
tions of  domain boundary,  as  indicated by (ζ, α)  plotted in
Figs.  4c, d for  domain D2 versus  (ζ, α)  in Figs.  4a, b for
domain D1. In this case, the SOR-based method further falters
as  its  accuracy  is  reduced  significantly  (see  row  7  versus
row  2  of Table  1).  The  M-spectral  method  also  fails  to
retain  adequate  accuracy.  However,  its  accuracy  is  slightly
improved (see row 8 versus row 3 of Table 1). In contrast,

the remaining three methods still have adequate accuracy, not-
ing further that the integral-SOR method is still the most accu-
rate  (see rows 9–11 of Table 1).  In particular,  as  shown in
Fig. 3c, vc from the SOR-based method has large deviations
from v near  the  eastern  boundary of  domain D2, especially
at and around the northern tip of Z1 and the eastern end of
Z4. In contrast, the complex convergent flow structures of v,
especially those in the three convergent zones, are well cap-
tured by vc from the integral method (Fig. 3d) and almost iden-
tically reproduced by vc from the integral-SOR method (not
shown).

As the analysis domain is further reduced to domain D3,
sharp variations of v are not only distributed across or along
increased large portions of domain boundary but are also con-
centrated near the southern and northern boundaries as indi-
cated by (ζ, α), as plotted in Figs. 4e, f. In this case, accuracy
losses  are  seen  to  various  degrees  for  all  the  methods  (see
results for D3 versus those for D2 in Table 1), but the inte-
gral-SOR  method  has  the  smallest  accuracy  loss  and  still
maintains adequate accuracy. In contrast, the four remaining
methods fail to retain adequate accuracy, and the M-spectral
(SOR-based) method is still least (second least) accurate. In
particular, as shown in Fig. 3e, vc from the integral method
has significant  or  large deviations from v in Z4 around the
southwest  corner  and  along  large  portions  of  southern  and
western boundaries of domain D3. Still, these deviations are
mostly  corrected  in  terms  of vc from  the  integral-SOR
method, as shown in Fig. 3f.

The accuracy of (ψin, χin) obtained from the first step of
the  integral  method  (also  the  first  step  of  each  hybrid
method) is checked by comparing (ζc, αc) with (ζ, α) computed
from v, where ζc (or αc) denotes the vorticity (or divergence)
in terms of the reconstructed vc and is computed here from
∇2ψin (or ∇2χin).  As shown in Fig. 4, (ζc, αc) matches (ζ, α)
almost perfectly in domain D1, although the closeness of (ζc,
αc)  to  (ζ, α)  decreases  slightly  as  the  analysis  domain
reduces from D1 to D2 and then to D3. In contrast, when (ζc,
αc)  is  computed  from ∇2(ψin,n, χin,n),  with  (ψin,n, χin,n)
obtained from the first step of M-spectral method, the com-
puted (ζc, αc) matches (ζ, α) very poorly in each domain (not
shown). This implies that (ψin,n, χin,n) is not accurately com-
puted, as its computation is sensitive to the effects of the com-
plex flow structures of v in each domain. Besides, the use of
homogeneous boundary conditions in the first step of the M-
spectral  method  causes  sharp  cross-boundary  variations  of
(ψin,n, χin,n)  and  even  sharper  cross-boundary  variations  of
(ζc, αc) computed from ∇2(ψin,n, χin,n), and this also partially
explains the aforementioned poor match.

The left-hand-side and right-hand-side terms of the solv-
ability  conditions  in  Eqs.  (3a)  and  (3b)  are  computed  by
using v in  each domain.  The computed values  are  listed in
each row of Table 2, showing that these two solvability condi-
tions are satisfied accurately by v (as stated earlier in section
2). The left-hand-side terms of the solvability conditions in
Eqs.  (3a)  and  (3b)  are  also  computed  in  each  domain  by
using the vc values from each method. These computed values

Table  1.   The  SCC  and  RRD  value  between  the  original v and
reconstructed vc from each listed method for each domain. See Eqs.
(9a, b) for definitions of SCC and RRD. Bold fonts indicate those
values  where  both  SCC  and  RRD  satisfy  the  accuracy  adequacy
criterion given by Eq. (10).

Domain Method SCC RRD

D1 SOR-based 0.9392 0.2820
M-spectral 0.7836 0.5479

Integral 0.9870 0.1156
Integral-spectral 0.9867 0.1151

Integral-SOR 0.9958 0.0720
D2 SOR-based 0.8644 0.2641

M-spectral 0.8661 0.3680
Integral 0.9809 0.1115

Integral-spectral 0.9822 0.1032
Integral-SOR 0.9932 0.0648

D3 SOR-based 0.8889 0.5024
M-spectral 0.8753 0.5786

Integral 0.9740 0.2240
Integral-spectral 0.9633 0.2698

Integral-SOR 0.9909 0.1288
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Fig. 3. Reconstructed velocity vc (plotted by black arrows) overlaid by original velocity v (plotted
by green arrows) and velocity difference vc – v (plotted by red arrows) in the domain D1 from (a)
the SOR-based method and (b) the M-spectral method, and in domain D2 from (c) the SOR-based
method  and  (d)  the  integral  method,  and  in  domain D3 from  (e)  the  integral  method  and  (f)  the
integral-SOR method.
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Fig. 4. Reconstructed ζc (or αc) plotted by black contours (every 2 × 10–4 s–1) versus original ζ (or α)
shown by color shades in the top left (or right) panel for domain D1, middle left (or right) panel for
domain D2, and bottom left (or right) panel for domain D3. Here, ζ (or α) is computed from original v.
At the same time, ζc (or αc) denotes the vorticity (or divergence) of reconstructed vc and is computed
here from ∇2ψin (or ∇2χin)  with (ψin, χin)  obtained from the first  step of  the integral  method (that  is
also the first step of each hybrid method). The color scale is shown on the right side in the last panel.
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are then normalized by the corresponding values computed
by using v in the same domain. As listed in Table 3, the nor-
malized values deviate from one to different percentages for
different methods, indicating that the two solvability condi-
tions are not accurately satisfied by vc —again, as previously
stated in section 2. In particular, large or very large deviations
are seen for the three previous methods. In comparison, rela-
tively  small  to  very  small  deviations  are  seen  for  the  two
hybrid  methods,  especially  the  integral-SOR method.  Note
that ve ≡ k × ∇ψe + ∇χe = k × ∇ψe is the externally induced
component obtained with χe = 0 in the second step of either
the  integral  or  integral-SOR  method,  so  its  contribution  to
∫Svndl is –∫S∂sψe dl = –∫Sdψe = 0 and its contribution to ∫Svsdl
is ∫S ∂nψedl and is not exactly zero (as it should be) and deviates
from zero differently for the two (integral and integral-SOR)
methods.  This  explains  why  the  integral  and  integral-SOR
methods have the same normalized value for ∫Svndl but  not
for ∫Svsdl, as shown in Table 3. Table 4 lists the normalized
values of ∫S vs,indl and ∫Svn,indl with (vs,in, vn,in) obtained from
the first step of the integral method. For each domain, the nor-

malized value of ∫Svn,indl in Table 4 is identical to that of ∫S
vn dl from the integral (or integral-SOR) method in Table 3.
This  is  again  due  to  the  above-explained  zero  contribution
of ve to ∫Svndl. However, starting from the normalized value
of ∫S vs,indl in Table 4 for each domain, the normalized value
of ∫Svsdl from the integral method in Table 3 deviates further
or even much further away from one, and this is due mainly
to  relatively  larger  errors  in ve obtained  from  the  second
step  of  the  integral  method—which  is  sensitive  to  small
errors in boundary conditions as explained earlier in section
2.1. Judging from the closeness of normalized value to one
from each method listed in Table 3 for each domain, the inte-
gral-SOR method is  still  the  most  accurate  among the  five
methods.

Boundary  conditions  are  of  vital  importance  for
mesoscale  diagnostic  studies  and  numerical  modeling.
Table  3 gives  an  averaged  evaluation  of vc accuracy  from
each method along the four boundaries of each domain. Judg-
ing from the closeness of normalized value to one listed in
Table  3 from  each  method  for  each  domain,  the  integral
method and two hybrid methods are more accurate than the
other two. Figure 5 depicts the along-boundary distributions
of  the  original vs (vn)  versus  reconstructed vs (vn)  to  reveal
detailed  resemblances  and  discrepancies  between v and vc

along the four boundaries of each domain. The complex varia-
tions and local extrema of the original (vs, vn) are well captured
by  the  reconstructed  (vs, vn)  from  the  two  hybrid  methods
(shown by the orange and red curves in Fig. 5) but not well
captured by the other three methods. The integral method cap-
tures vn very closely because the externally induced part of
vn, i.e., –∂sψe, is computed purely and quite accurately from
the boundary condition of ψe (obtained by integrating vn,in –
vn as explained in section 2.1), but it fails badly in capturing
vs due mainly to large errors in ve obtained from the second
step of the integral method (again as explained earlier in sec-
tion 2.1). 

5.    Conclusions

This paper reveals, for the first time, that all three types
of methods previously used for computing the streamfunction
ψ and  the  velocity  potential χ in  limited  domains  fail  to
retain adequate accuracies to different degrees when applied
to complex flows with near grid scales in limited domains.
This is indicated by the failures of computed ψ and χ to recon-
struct the original horizontal velocity v to adequate accura-
cies. This modeling aspect represents a new problem encoun-

Table  2.   Values  of  the  left-hand-side  and  right-hand-side  terms
of  solvability  conditions  in  Eqs.  (3a)  and  (3b)  computed  by
using the  original v in  each domain are  listed  in  each row (units:
10–5 m2 s–1) .

Domain ∫S vsds ∫D ζdx ∫S vndl ∫Dαdx

D1 –10.5308 –10.5308 –10.8613 –10.8613
D2 2.6230 2.6230 –6.7034 –6.7034
D3 –1.9023 –1.9023 –13.8323 –13.8323

Table  3.   Normalized  values  of  the  left-hand-side  terms  of
solvability conditions in Eqs. (3a) and (3b) computed with (vs, vn)
given  by vc in  each  domain  from  each  method  are  listed  in  each
row.  The  values  of  ∫Svsdl from  the  five  methods  listed  for  each
domain  are  normalized  by  the  value  of   ∫Svsdl listed  for  the  same
domain  in Table  2.  The  values  of  ∫Svsdl from  the  five  methods
listed for each domain are normalized by the value of ∫Svndl listed
for the same domain in Table 2.

Domain Method ∫Svsdl ∫Svndl

D1 SOR-based 0.9852 0.5884
M-spectral 1.7570 1.0915

Integral 1.1236 1.0047
Integral-SOR 0.9973 1.0047

Integral-spectral 0.9868 1.0757
D2 SOR-based 0.8368 0.4332

M-spectral 0.5385 1.4400
Integral 1.7196 0.8844

Integral-SOR 0.9247 0.8844
Integral-spectral 0.8302 0.9090

D3 SOR-based 0.7653 0.4765
M-spectral 0.7808 1.1484

Integral 0.6659 0.9457
Integral-SOR 0.9812 0.9457

Integral-spectral 0.8176 0.9693

Table 4.   As in Table 3,  but  computed with (vs,in, vn,in)  given by
the  internally-induced  component  of vc in  each  domain  obtained
from the first step of the integral method listed in each row.

Domain ∫Svs,indl ∫Svn,indl

D1 0.9725 1.0047
D2 0.9421 0.8844
D3 0.7188 0.9457
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Fig. 5. The original vs (or vn) plotted in dashed black versus the reconstructed vs (or vn) plotted in solid green
for the SOR-based method, yellow for M-spectral method, blue for integral method, orange for integral-spectral
method,  and  red  for  integral-SOR  method  along  four  boundaries  of  domain D1 in  top-left  (or  right)  panel,
domain D2 in middle-left (or right) panel, and domain D3 in bottom-left (or right) panel.
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tered in our recent application of previous numerical methods
to complex flows. The numerical issue yields sharp horizontal
variations  not  only  inside  each  domain  but  also  across  or
along large portions of the domain boundary. This problem
cannot  be  solved  by  simply  interpolating  the  original  flow
field into a finer mesh because the interpolated field still can-
not resolve the complex flow structures that are either unre-
solved or poorly resolved by the original field, considering
that the spatial resolution of the original flow field is predeter-
mined  by  its  data  source  (from  a  model  output  or
reanalysis).

To solve this problem, we revisit three types of previous
methods  (in  sections  2.1–2.3)  to  identify  and/or  envision
each  method's  strengths  and  key  weaknesses,  which  ulti-
mately causes a significant loss of accuracy when applied to
complex  flows  over  mesoscale  domains.  In  particular,  the
SOR-based  method  (Sangster,  1960)  and  the  spectral
method  (CK92b,  but  modified  with  a  well-redefined  inner
solution as shown in section 2.3) are found to lose their accu-
racies mainly in response to increased spatial variations of v
inside  the  limited  domain,  while  their  accuracies  are  not
affected  much by increased  variations  of v across  or  along
the  domain  boundary.  Increasing  the  number  of  iterative
steps fails to reduce the errors caused by their inherent weak-
nesses.  On  the  contrary,  the  integral  method  (CX11)  is
found  to  lose  its  accuracy  mainly  in  response  to  increased
variations  of v across  and  along  the  domain  boundary,
which reduces the accuracy of the externally induced (ψ, χ)
obtained in the second step while retaining sufficient accuracy
obtained  in  the  first  step  for  the  internally  induced  (ψ, χ),
despite  the  increased  spatial  variations  of v inside  the
domain.

Based  on  the  above  findings,  two  hybrid  methods  are
developed optimally by combining the strengths of the previ-
ously mentioned methods (in section 2.4). One is called the
integral-SOR method,  which  combines  the  first  step  of  the
integral method with the second step adopted from the SOR-
based  method.  The  other  is  called  the  integral-spectral
method,  which  combines  the  first  step  of  the  integral
method  with  the  second  step  adopted  from  the  spectral
method.  These  two  hybrid  methods  are  tested  against  the
three previous methods with real-case, complex flows over
three mesoscale domains with successively reduced domain
sizes (see section 3.1). The accuracy of each method is mea-
sured  and  evaluated  by  the  spatial  correlation  coefficient
and the relative root-mean-square difference between v and
its corresponding reconstructed one in each domain (see sec-
tion  3.2).  The  test  results  show  that  the  integral-SOR
method is significantly more accurate than the integral-spec-
tral method. At the same time, the integral-spectral method
is generally more accurate than the three previous methods.
However, the integral method (the most accurate among the
three  previous  methods)  is  slightly  more  accurate  than  the
integral-spectral method for the smallest domain. Computa-
tional  costs  are  investigated  in  the  three  experiments.  All
five  methods  cost  similar  CPU time  (less  than  3  seconds),

and the SOR method costs the least without parallel comput-
ing.  For  future  applications  to  domains  with  massive  grid
points,  parallel  computing  can  easily  be  adopted  to  greatly
increase  the  computational  efficiency  for  the  integral  and
hybrid methods. Therefore, the integral-SOR method is rec-
ommended for future applications and diagnostic studies of
complex flows over mesoscale domains.
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